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Abstract. The generalized Hamiltonian stmctures of several three-dimensional dynamical 
systems of interest in physical applications are considered. In general, Hamiltmias exist 
only for systems tha possess at least one time-independent constant of motion. System with 
only time-dependent constants of motion m y  sometimes be rescaled and their constant of 
motion made time-independent. When this is possible. the tnnsformed system may be east in a 
generalized Hamiltonian formalism with non-canonical svucture functions. 

1. Introduction 

Recently, Nutku [I] presented a Hamiltonian formulation (in a generalized sense [2]) for 
an integrable class of the 3D Lotka-Volterra system (Lvs). Also recently, Cair6 and Feix 
[3] showed that such structures can always be determined in a closed form for second- 
order systems with a timeindependent constant of motion (CM). Other systems with time- 
dependent CMS have been expressed in Hamiltonian form via a time-dependent rescaling. 
In particular, three out of the six known subcases of the Lorenz system that admit a time- 
dependent cM were recast in Hamiltonian form 141 after rescaling. A subsequent study [5] 
showed that Hamiltonian structures for 3D vector fields can frequently be constructed if one 
CM is known. Moreover, when two time-independent CMS are known, the whole problem 
is reduced to a quadrature. 

Recently, three-dimensional systems have become an important topic in mathematical 
physics, as can be verified in the literature. Some, such as the Euler equations for the rigid- 
body motion [6]  or the ray optic equations in an axisymmetric medium [7], are completely 
understood and have a well established Hamiltonian form. Others, with a shorter history, 
deserved considerable attention in recent years (see, for example, [9-121) mainly because 
of their importance in applications but also because of their mathematical properties and 
sometimes unexpected behaviour. One interesting example is the Lorenz system [8] which 
models the convection of Bkrnard cells in a hot fluid layer. Equally important are the 
3D Lvs that model the interplay of population growth [IO] and the behaviour of some 
physical systems or chemical reactions, the reduced three-wave (RTW) system [ I l l  that 
describes the interaction of three waves in a conducting medium and the Rabinovich system 
[I21 that also describes three-wave interaction. In this paper, we consider these systems 
under the conditions (parameter values) where a CM is known and seek their generalized 
Hamiltonian form. This representation is searched using a formalism [SI developed recently 
for 3 0  systems by which the CM becomes the generalized Hamiltonian with (usually) non- 
canonical structure functions. Since, for the above mentioned systems, the known CMS have 
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an explicit dependence on time, a direct application of the procedure proposed in [5] is not 
possible. This, in fnct, should be expected since most of them, like the Lorenz system, 
support turbulent regimes and, therefore, possess no canonical Hamiltonian globally. To 
circumvent this problem and obtain an alternative Hamiltonian representation of the same 
problem, we resort to time rescaling. For several important cases, the rescaling removes 
the time dependence of the CM and the theory can be applied indirectly. This originates 
an equivalent formulation of the initial problem which is non-autonomous but admits a 
generalized Hamiltonian or Poisson structure. 

The organization of the paper is as follows. In section 2, we review the basic theory for 
constructing Poisson structure in 3D. In section 3, we apply the theory to the three rescalable 
and integrable cases of the Lorenz system. In sections 4-6, we similarly analyse the five 
integrable cases of the RTW system, the seven instances of the Rabinovich system that admit 
a CM, and the rescalable time-dependent first integral of the 3D LVS. Since the derivations 
are quite similar, we present detailed calculations only for some typical cases. In section 
7, we present one sample application of the results by studying the nonlinear stability of 
one example of the Lorenz system that is completely integrable. Finally, in section 8, we 
present our conclusions. 

2. Basic theory 

In this section, we review the basic theory of Hamiltonian- or Poisson-structure construction 
for 3D systems and introduce the concept of associated rescaled systems. 

It has been shown recently [5] that all 3D systems 

that admit a time-independent CMt can, in general, be recast in a Hamiltonian form 

2 = J’kakH = [ x i ,  HI (2) 

where an overdot indicates the derivative with respect to time, J i k  are the components of 
a structure matrix (SM), & is the partial derivative with respect to x k  and the symbol [ , ] 
represents the Poisson bracket. In equations (1) and (Z), and throughout the text, the indices 
run from 1 to 3 and the Einstein summation convention is used unless otherwise specified. 

The Hamiltonian formalism requires two ingredients: the Hamiltonian function H and 
the Poisson bracket which is defined, in a generalized form [2], in terms of the structure 
functions J i k .  The latter must be antisymmetric and satisfy the Jacobi identity which in 3D 
reads 

Remark I. For our purposes, a function H ( z )  of the dynamical variables ( X I ,  x z ,  x 3 )  is 
said to be a time-independent CM for (1) iff 

u k & f f ( r )  0. (4) 

If an explicitly time-dependent function H ( z ,  f) satisfies (4) then it is no longer a CM, but 
may still serve as a Hamiltonian for the system. 

t In fact, the theory applies for any function H(x. 1) th3f satisfies equation (4). 
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The procedure for constructing Hamiltonian structures for 3D systems starts with an 
otherwise arbitrary anti-symmetric matrix of elements J ' j  on which we impose the relations 

ajH(z) (5) ,y = pi 

for s = 1,2. This determines two out of the three independent functions in terms of only 
one of them, say, J = J". The third equality 

u3 = J ~ ~ ~ , H ( X )  (6) 

is automatically satisfied when H ( s )  is a first integral for ( I ) .  

such that 
In particular, we can always choose a labelling for the variables (see remark 2, below) 

The unknown function J is determined from the solution of the first-order linear partial- 
differential equation (PDE) 

u k & J  = AJ + B (8) 

where A and B are given in terms of the field up and the CM by 

A = akuk - ( a 3 u k ) ( a , ~ ) / ( a 3 ~ )  (9) 

B = - U ~ & U ' ) / ( ~ ~ H ) .  (10) 

Equation (8) is the Jacobi identity (3) expressed in terms of J only 

Remark 2 .  The way A and B depend on a3H is a consequence of the choice J = J I z .  
If in some application &H 0, then equations (7), (9) and (IO) should undergo a cyclic 
permutation of the indices (1 + 2 + 3 + 1) in order to trade a3H with either alH or 
a z H ,  whichever is non-zero. 

The characteristic equations 

d J  _ = - = _ -  -- dx] dx2 dx3 
u1 uz u3 A J + B  

associated with the PDE (8) constitute the working element in our subsequent calculations. 
However, any particular solution to equation (8) yields a non-trivial SM. Hence, we take 
the practical approach and solve for the easiest particular solution whenever possible. This 
will, in general, avoid the full integration of the characteristic equations (11). 

In order to apply the theory to systems with a time-dependent first integral, we restrict 
our attention to rescalable CMS of the form 
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where P(x ' ,  xz,  x 3 )  is a polynomial (or quasi-polynomial) in (XI, x 2 ,  x 3 )  and s is a scalar. 
In practice, this implies no serious limitation since all time-dependent CMS for 3D systems 
we meet are of this form. 

Finally, by rescalable CM, we mean functions of the form (12) for which there exist 
scalars SI .  s2 and s3 such that the substitution 

(no sum over k )  transforms H ( x l ,  x2,x3, f) into P(y ' ,  yz, y3) according to 

For example, any function of the form (12), where P is homogeneous of order n, becomes 
time-independent after the transformation (13) with st s/n. This transforms the original 
first integral into a time-independent CM for the corresponding rescaled system. 

We shall consider only systems with rescalable first integrals. This choice is justified by 
the non-existence (at least for the systems treated in this paper) of any alternative strategy 
that works for systems with a rime-dependenr CM. The rescaling, however, does not deprive 
the original system of any of its primitive features: we can always re-establish the original 
representation by the inverse transformation. 

After this quick review of the underling theory and the definition of rescalable time- 
dependent CM, we proceed by analysing separately various 3D systems currently found in 
the literature. For easier future reference, all results will be summarized in tables. 

3. The Lorenz system 

The Lorenz system [SI 

i = u ( y  - x )  

j = - y + r x  -xxz 

i = -bz + xy 

where U ,  r and b are arbitrary (non-negative) parameters, has deserved considerable 
attention, mainly in view of its ability to model the onset of chaotic behaviour and the 
existence of strange attractors. 

For appropriate subranges of the parameters, six time-dependent CMs have been 
determined by some suitable technique [9]. Among these, three are rescalable by 
transformations of the type (13). This corresponds to case numbers 1, 3 and 5 in KuS's table 
191. For these special cases, it is possible to rewrite the rescaled system using a generalized 
Hamiltonian structure. 

There is additional freedom in the transformation of the variables when the CM does not 
depend on some of the dynamical variables a,H 0, for some k. In these cases, we may 
choose SA in (13) such that the new vector field is divergenceless. This simplifies the form 
of A and, hence, the subsequent calculation. For example, in the first case of the Lorenz 
system H = ( x z  - 20z) exp ( k t ) .  the transformed first integral becomes 
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when the new variables are chosen according to X I  = xexp(ot ) ,  x2 = y and x3 = 
L exp (2ut) .  However, it is more advantageous for later calculations to simultaneously 
transform x' by xz = yexp(t). In this case, the rescaled CM remains the same but the new 
Lorenz vector field (notice that here b = 2 0 )  becomes divergenceless 

I = 0.y2e(v-l)r 

To illustrate the general procedure, we now present the calculation details of the Poisson 
structure for the rescaled Lorenz system with CM (16). For the rescaling listed in row LOR( 1) 
of table 1 and using (9) and (IO), we obtain A 5 0 and 

I 1 2  B = ~x x exp(-Zot). 

Hence, in the new variables, one of the characteristic equations (1 I ) ,  in particular 

dx3 d J  
v3 A J + B  
_ = _ _  

becomes 

which is readily integrated for the particular solution 

J = Lx3eU-30)t 
2 

The whole calculation is completed by substituting J into equations (7) which yields the 
following elements for the SM: 

I2 - I 3 (I-3n)r J - - x e  

This determines a generalized Hamiltonian or Poisson structure for the rescaled Lorenz 
system restricted to the parameter values given in case 1 in KuS's table. This Poisson 
structure is completely specified by the Hamiltonian H' = ( x ' ) ~  - Z0x3 and the structure 
functions in (22). All the above results are regrouped in tables 1-3 under rows  LOR(^). 

To proceed, we treat the third case in KuS's table, i.e. the case where H = (y2 + 
z 2 )  exp(2t). Now, we transform the variables according to the line labelled LOR(3) in table 1 
and obtain the time-independent rescaled CM H' = (xZ)' t  (2)'. Under this transformation, 
the vector field (LOR(3) in table 2) becomes divergenceless and implies A and B given by 

(23) B = -iAoe(*-')' and 2 
A = -  X'X2e-or 

1 3  
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Table 1. Transformations md Rescaled Constants of Motion 

The ratio of 5 and A is independent of the dynamical variables and consequently 

satisfies equation (1 1) as can be verified directly. This provides a particular solution to (8) 
and completes the derivation of the Poisson smcture for case 3 in KuS's table. The detailed 
form of the transformation, the rescaled vector field, the Hamiltonian and the elements of 
the SM are summarized in  row LOR(3) in tables 1-3. 

The last rescalable CM in the Lorenz system is ( y 2  - rx2 + z') exp (-2) (case 5 in 
KuS's table) and can be treated similarly. The coordinate transformation, the rescaled CM 
and, hence, the Hamiltonian, the new vector field as well as the final form of the structure 
functions are again listed in the same tables under row LOR@). 
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Table 3. The structure functions. 

System J '2 J l 3  J B  

 LOR(^) f."exp[(~ - 3 n ) r l  f.z2exp[(r - ~ ) r ]  t ( r / r ) x '  exp[(l - n)r] 
LOR(3) inexpI(u - l ) r l  0 I 

4. The RTW interaction 

The ( R W  consist of the equations [ll] 

i = y x  +ay f z  - 2y* 

3 = y y  - 6x + 2 r y  

2 = -2z(x i- 1) 

where x .  y and z denote the amplitudes of interacting waves in appropriate units and 
the parameters 6 and y measure detuning from synchronism. The system is known to 
admit five CMS 1121 which we list in table 4 for future reference. It is readily seen in 
table 4 that here, unlike in the Lorenz system, all CMS are rescalable and, as a consequence, 
Hamiltonian structures can easily be determined for their rescaled versions. The adequate 
transformations, the rescaled fields, the CM and, therefore, the Hamiltonians and associated 
structure functions are listed in table 1-3, rows RTW(~; i = 1 . . .5). 

Table 4. Reduced threewave interaction. 

m e  Y S CM 

R?W(l) y = 0 V Z(Y - 6/2)exp(W 
RlW(2) y = - 1  v [ ( x F  + (Y)' t rlexp(2t) 
nnv(3) y = -1 s = o  zyexpDt) 
m ( 4 )  v S = 0 ryexpI(2 - y)tl 
nnv(5) y = - 2  v W t (Y)' t 2yr/61exp(4r) 

The derivation of the basic component J = J" of the SM parallels the derivation 
performed in the analysis of the Lorenz system in section 3. In fact,, for cases ~ ~ ( 1 , 3 - 5 ) ,  
the function J is obtained in a way similar to that in LOR(3), basically, because in these 
cases all the ratios B / A  are independent of the dynamical variables. The case RTW(2) is 
tackled in a manner similar to LOR(1). 
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5. The Rabinovich system 

Thc Rabinovich system is also a three-wave interaction system [I  11 and is described by the 
equations 

X = k y  - V I X  + YZ 
j = hx - u ~ y  - xz 

z = - y z +  X Y  

(26) 

where x. y and : are wave amplitudes, ut ,  UT and v3 are damping rates and k is a constant 
proportional to the driving amplitude of the feeder wave. This system has also been 
scrutinized [ 121 and a total of seven CMS have been identified. These results are listed 
in table 5 in which the labels RAB identify the different cases and corresponding parameter 
ranges. 

Table 5. Rabinovich system 

The CMS in  RAB(4,5) are time-independent and one would, therefore, expect them to 
solve the associated characteristic equations directly without first passing by the rescaling 
stage. Unfortunately, however, the resulting equations are difficult to handle and we were 
unable to tackle them without first rescaling the variables according to rows RAB(4.5) of 
table 2. The calculations become easier in rescaled coordinates essentially because the new 
vector fields are divergenceless. The complete derivation of the basic component J of the 
SM, for cases R A B ( ~  ,2,4,5) in rescaled coordinates, was accomplished following a sequence 
of steps that parallel the treatment of LOR(3). The results are registered in tables 1-3 as 
usual. 

To complete this section, we present some details of the calculations for RAB(3). For 
this case, 83.4 +E 0 and (7), (9) and (10) need to undergo one cyclic permutation of the 
indexes. This implies J = J z 3  and 

The CM in RAB(3) is not dependent on z .  However, when this variable is conveniently 
rescaled using s3  u3, we obtain B = 0 and (8) becomes homogeneous. In such cases, 
J = 0 is trivially the simplest solution. This does not imply a trivial solution for the SM, 
as can be checked in table 3 where the remaining I" are listed in row RAB(3). 

0 in rescaled coordinates and, 
hence, J = 0. Again, the complete results of the calculations are collected on rows RAB(7) 
in tables 1-3. 

Finally RAB(7), the last case in table 5, also has B 
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6. The LVS 

Finally, we come to the LVS where the solution to equation (11) is the most difficult to 
calculate. The LVS and special subsystems are quite useful in modelling many physical, 
chemical and biological processes and are defined, in their most general form, by 

i = z(a3 + b31x + b32y + b33z). 

We note in passing that both the abc [13] and the May-Leonard systems [14] are special 
cases of the LVS. 

Cair6 and Feix [3] have several CMS for N-dimensional LVS. In 3D, one of these is 
rescalable. This, in particular, reads 

H = xUy8zYe-" ' I  (30) 

where a, b, y and s are given by 

a = b22631 - b21b32 19 = bilbx - b12b31 

y=b12b21 -bllbzz s = a i a + a ~ b + a 3 y  

and det(bi,) = 0. Under the additional constraints = 0, the H becomes time-independent 
and the system possesses a generalized Hamiltonian structure with five free parameters [5 ] .  
For arbitrary s, we use rescaling according to what is listed in row Lvs(1) of table 1. The 
rescaled vector field and time-independent CM (hereafter represented by H') are presented 
in rows LvS(1) of tables 1-3. 

We now present some details of the calculation. First, introduce the compact notation 

and ( X I .  x z ,  x3) = (x. y .  z), summation over k is not implied and express A and B ,  necessary 
in equation (8). as 

A = U' + u2 + bjje"j'xj 
i 

B = Uexp(u,t)(b23~' - b13uZ)/(yH') (33) 

where U x1x2x3. Unfortunately, there is no simple solution for J when A and B are 
given by (32) and (33). The most general situation that we can deal with is obtained by 
imposing one additional condition on the coefficient bjj, namely, equality (41) below. This, 
however, still leaves seven free parameters and, therefore, includes more general systems 
than those treated by Haas and Goedert with five or the abc system solved by Nutku with 
four free parameters. 

Elementary algebraic rules applied on the characteristic equation (11) imply 

d J  
AJ + B 

-~ - dU 
U(ul + u2 + u3) (34) 
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To further simplify the notation, we now introduce the symbol 

6,  = bl, exp(a,r) 

with no sum over j ,  and make the substitution 

(U] + u2 +U') = A + (e3i - e l l ) ~ ]  + (e3z - eu)xz. 

This transforms (34) into 

d J  
=- dU 

U [ A + ( & ~  - e l l ) ~ i + ( e 3 z - e , ) ~ z ~  A J + B '  

Equation (36) allows us to recast the characteristic equation into the form 

d[J - ?.U/(yH')I _ -  - dxk 
uk A [ J  - ?.U/(yH' )]  - ( B ' U ) / ( y H ' )  

where ?. is an arbitrary function of time to be chosen later at convenience and 

(35) 

(37) 

~ ' = [ ? . ( 0 3 l  -e l l )  -e&,, + e i 3 ~ z r ~ ~ 1  + ~ h ~ e 3 z - e u ~ - & 1 e l z + e 1 3 & l ~ ~ z .  (38) 

Equation (37) is difficult to solve in its general form. We tackle the problem by imposing 
the extra condition B' = 0. As can be easily seen, under this additional constraint, 

is a solution to (37) and, therefore, to the fundamental condition (8). 
The condition on B' determines the value of the arbitrary function 

(40) 
e"3'(b~3b~i - bi3bZ1) ?.= 

631 - h i  

and implies, in addition, that 

(bsz - bzz)(bz3b11 - b13bz1) = (hi - b~l)(b&z - b13bzz). (41) 

This yields 

which determines, through equations (7), the form of the SM. Their final forms are listed in 
row Lvs(1) of table 3. 

Note that in order to solve for J ,  we needed to impose condition (41) on the coefficient 
bij in addition to det(bij) = 0. Hence, there remains ten out of the original coefficients 
in the L ~ S .  Moreover, three coefficients can always be set to one by rescaling, leaving, 
therefore, seven arbitrary parameters. 
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7. Nonlinear stability analysis 

The procedure for constructing the generalized Hamiltonian structure of the 30 systems can 
be applied twice whenever the system admits two functionally-independent CM that are either 
time-independent or can be rescaled into time-independent CM. When this is possible, we 
may eventually come up with bi-Hamiltonian structures. These become more interesting 
later mainly because they imply complete integrability and frequently provide additional 
means to study the system in more detail. An interesting problem to examine when a 
system possesses a bi-Hamiltonian structure is the nonlinear stability of its critical points. 
Although this is not in the original scope of this study, we present here a quick analysis of 
the nonlinear stability of a special case of the Lorenz system that admits a bi-Hamiltonian 
structure. Other systems in this paper admit, similarly, a second CM and could also be 
inspected for stability. 

To illustrate the possibility of nonlinear stability analysis, we consider the Lorenz system 
with U = 5 ,  b = 1 and r = 0. For these parameter values, the system possesses two CMS, I 

H I  and Hz 

H I  = (y2 + 2') exp(2t) HZ = ( x 2  - z )  exp(t). (43) 

If we rescale the dynamical variables according to 

i = x exp(tj2) 7 = yexp(t) Z = zexp(t) (44) 

and transform the time by using 

i = -2exp(-t/2) (45) 

2' = i j j '  = - f iZ '  = xy 

we obtain the equivalent system 

(46) 

where the ' means derivative with respect to the new time. The rescaled system (46) has two 
time-independent CMS, I?] = (jz+i2) and I?z = (iz-i), and fixed points on rI = (O,O, z,) 
and rz = (xe, 0,O). Notice that, except for the origin, the fixed points of the rescaled system 
are not fixed points in the original system. 

We now proceed with the stability analysis according to the procedure proposed in [7]. 
For the CM Cl, we find the structure functions 

_ _  

3 ' 2  = -Jz1 = 
4 

and the associated Casimir CI = #z. The energy Casimir function can, therefore, be written 

H ( C )  = HI -k F(&) = j* + i2 t F ( i Z  - Z) (48) 

where F is any arbitrary function of its argument. The first variation of H(C)  is given by 

D H ( C ) G r = 2 j d j t 2 i d i - t ( 2 i c L f - d d i ) F '  (49) 
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where F' = dF/dC. For r l ,  that is for ze on the i-axis, DH(C)Gr is zero iff F'(-ze)  = 22.. 
To study the formal stability (in finite dimensions formal stability implies nonlinear 

stability), we calculate the second variation of H ( C )  

D2H(C)(8r)' = 2(dp)'+ 2(di)'+ Z(d.E)'F' + (U di - di)'F". 

DZH(C)(8r)' = Z(dj9' + 4ze(G)' + (2 + F"(-z.))(dZ)' 

(50) 

At equilibrium, we obtain 

(51) 

which is positive definite iff & > 0 and 2 + F"(-&) > 0. For example, the function 
F(Z)  = 22 e~ - + (Z + among others, satisfies the conditions on F' and F" over all 
positive zc. Therefore, the positive i-axis is nonlinearly stable under the action of the 
rescaled field (46). 

The equilibrium r2 can be analysed in a similar way. The annihilation of the first 
variation and the positive definiteness of the second variation imply F'(x:) = 0 and 
F"(x:) > 0. Io this case, F(Z)  = (Z - x:)' satisfies the requirements and consequently r2 
is nonlinearli stable for arbitrary xe.  

Other systems analysed in this paper can be studied in the same way. In particular, the 
RTW system for 8 = 0 and y '= - 1  has a rescaled version with equilibria (0, ye,  2y:) and 
(xe ,  0,O). When ye # 0, the first equilibrium is nonlinearly stable in the formulation of 
the corresponding Hamiltonian. The second equilibrium cannot be classified by use of the 
same Hamiltonian and would require a second CM to resolve its stability property. 

8. Conclusions 

In this paper, we have shown that several 3D systems of interest in physics or biology, 
notorious for their peculiar behaviour (e.g. existence of an associated chaotic regime or 
strange attractors), can be endowed with a generalized Hamiltonian or Poisson structure 
if we rescale the dynamical variable appropriately. This possibility seems to open a new 
avenue in the study of such dynamical systems because the rescaling transformation can 
always be reversed, a procedure that 'projects' the solutions to the new equations back 
to the original phase space. In our analysis, we considered various examples, currently 
found in the literature, for their importance in relation to virtual applications. Our choice, 
however, was mainly dictated by the fact that, for some parameter regimes, these systems 
are known to possess timedependent CMS. This per se implies some degree of intrinsic 
symmetry which is reminiscent of a Hamiltonian structure. Possible applications related to 
these Poisson structures, like the stability analysis of the rescaled version of these systems, 
are open questions that were only touched upon in section 7 to show their possibility. A 
complete study of this and other related issues is not in the scope of this paper. 

Finally, we remark that some of the systems treated in rescaled form here have already 
previously been treated in the same spirit (finding their associated generalized Hamiltonian 
or Poisson structure). This was the case mainly for the integrable Lvs, which was first shown 
to admit a Hamiltonian structure by Nutku and whose results were recently generalized by 
Haas and Goedert. The rescaled Lorenz system had also been considered before. Here, 
we generalized these results. In particular, we presented the explicit calculation for the 
Structure functions J'j  of all the rescalable CMS of the Lorenz (three), the rescalable CM of 
the 3D LVS and all the known CMS of the RTW (five) and Rabinovich (seven) systems. 
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